论文摘要
放大 缩小

Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats

Shi Rongfeng

Affiliated Hospital of Nantong University

Background aims. Diabetic ischemic ulcer is an intractable diabetic complication. Angiogenesis is a critical factor for wound healing in patients with diabetic foot wounds. Sustained gene delivery could be notably necessary in modulating gene expression in chronic ulcer healing and might be a promising approach for diabetic foot ulcers. The aim of this study was to explore whether the engineered VEGF-A and PDGF-B based plasmid-loaded nanospheres could be upregulated in streptozotocin-induced diabetic rats and improve the wound healing.
Materials and methods. Sprague Dawley rats were used to establish diabetic foot ulcer models by streptozotocin and skin biopsy punch. The plasmids expressing VEGF-A and PDGF-B were prepared and then incorporated with polylactic-co-glycolic acid (PLGA) nanospheres to upregulate genes expression in vitro and in vivo.
Results. The cultured fibroblasts could be effectively transfected by means of nanosphere/plasmid in vitro. In vivo, the expression of VEGF-A and PDGF-B was significantly upregulated at full-thickness foot dorsal skin wounds and the area of ulceration was progressively and significantly reduced following treatment with nanosphere/plasmid.
Conclusions. Combined gene transfer of VEGF-A and PDGF-B could improve reparative processes in the wounded skin of diabetic rats and nanosphere may be a potential non-viral vector for gene therapy of the diabetic foot ulcer.